This document and the information contained herein is provided on an “As Is” basis and TCGRx® disclaims all warranties, express or implied, including but not limited to any warranty that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a purpose.

TCGRx® reserves the right to make changes to the content of this manual, at any time, without obligation to notify any person or entity of such changes.

This material cannot be copied or disclosed to others without the prior written permission of TCGRx®.

TCGRx®

N1671 Powers Lake Road

Powers Lake, WI 53128

(262) 279-5307
Welcome to the PharmAlytics ATP User Guide. Review this guide along with the online tutorials available through the TCGRx website. This guide can be used as a reference to complete the comprehension and certification tests contained within the learning portal.

To access the TCGRx training portal:

2. Hover the cursor over the Resources tab to view additional options.
3. Select Training Portal. This will take you to the training portal log-in window.

For questions, feedback, or to request training portal access, please contact the TCGRx Training Department at training@tcgrx.com.
Contents: PharmAlytics ATP User Guide

Contents: PharmAlytics ATP User Guide

CHAPTER 1: GETTING STARTED

Introduction

CHAPTER 2: HEARTBEAT

Organization Overview

Productivity

Average Hourly Bag Production Graph

Bag Production by Time Graph

Day’s Idle Time (Percent)

Day’s Idle Time by Minutes

All ATP’s Daily Production Detail Report

Utilization

Canister to Tray Ratio Graph

Canisters Used

Optimized Canister Report

Quality

Expired Medication Graph

Expired Medication List

Soon to Expire Medications Graph

Soon to Expire Medications List

Over Dispensing – Canister Graph

Over Dispensing Detail Report

CHAPTER 3: ATP TREND

Production

Overview

ATP Detail Production Report Weekly – 3 Months

Quality

Overview

Utilization

Overview
CHAPTER 1: GETTING STARTED

Introduction
This document focuses on the ATP analytics featured in PharmAlytics. It will describe the ATP Heartbeats, the ATP Trend, and the ATP Threshold tab. As the user goes through this document if a specific ATP isn’t stated when clicking on data, assume that the data for the next graph or table will contain combined data from all ATP’s.

CHAPTER 2: HEARTBEAT

Organization Overview
The Pharmacy Heartbeat is an indicator of the previous day’s data for the ATP and/or Beacon parameters at the pharmacy. There will be a Heartbeat for each TCGRx System within an organization. When a user logs into PharmAlytics, it will display the Heartbeats for each TCGRx System at the pharmacy. The heartbeat button is a circle encased in a black square. The Heartbeat will be green, yellow, or red depending on the parameter status.

Located above the heartbeat buttons is the Pharmacy Name.

Heartbeat Monitor for: Delta Healthcare

<table>
<thead>
<tr>
<th>Site A</th>
<th>Site A</th>
<th>Site B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>BEACON</td>
<td>ATP</td>
</tr>
<tr>
<td>ATP384 #3</td>
<td>SUWBEA01</td>
<td>ATP384 #2</td>
</tr>
</tbody>
</table>

Table one describes the Heartbeat color coding and its meaning.
Table one

<table>
<thead>
<tr>
<th>Color</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Green]</td>
<td>All the parameters at the pharmacy or system are equal to and/or greater than the goal threshold.</td>
</tr>
<tr>
<td>![Yellow]</td>
<td>One or two parameters are between the goal and alert threshold.</td>
</tr>
<tr>
<td>![Red]</td>
<td>Three or more parameters are between the goal and alert threshold or one parameter is greater than the alert threshold.</td>
</tr>
</tbody>
</table>

Located above the heartbeat button is the ATP or Beacon system that the heartbeat represents. Click on an ATP Heartbeat to display the Heartbeats for the three ATP parameters measured, which is shown in table two.

Table Two

<table>
<thead>
<tr>
<th>Number</th>
<th>Option/Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Productivity Heartbeat</td>
<td>Productivity is defined as pouch production per day, hour and minute.</td>
</tr>
<tr>
<td>2.</td>
<td>Utilization Heartbeat</td>
<td>Utilization is defined as canister management in the ATP.</td>
</tr>
<tr>
<td>3.</td>
<td>Quality Heartbeat</td>
<td>Quality is defined as canister performance and maintenance in the ATP.</td>
</tr>
</tbody>
</table>
Productivity

The Productivity Heartbeat includes the following graphs and reports for the previous day:

1. The average hourly bag production graph
2. Bag production by time graph
3. Day’s idle time (percent)
4. Day’s idle time by minutes
5. All ATPs daily production detail report

Average Hourly Bag Production Graph

The average hourly bag production is displayed as a bar graph. This graph displays the average number of bags produced per hour for the previous day. The x-axis represents each ATP at the pharmacy. The Y-axis is a representation of the average hourly bag production scale. The goal threshold is displayed as a green dot and the alert threshold is displayed as a red dot. This graph can be utilized to view ATP production deficiencies and assure the production goals are met. Click on the data on the graph to display the bag production by the time graph and the day’s idle time (percent) graph.

Bag Production by Time Graph

The bag production by time graph is a line graph displaying a breakdown of the previous day’s bag production by hours of operation. The X-axis represents the time of the day by hour. The Y-axis scale represents the number of bags produced. This graph gives the pharmacy the ability to view the high and low production times, and adjust the workflow deficiencies for future growth. Hovering over a data point will display the hour and number of bags that were produced during that hour.
Day’s Idle Time (Percent)
The Day’s Idle Time bar graph represents the percent of idle time. Idle time is defined as the
time the ATP is not filling pouches compared to that day’s production time. The X-axis
represents each ATP. The Y-axis represents the amount of idle time in a percentage. This
graph represents the percentage of time that the ATP is producing bags. Click on the data to
open the day’s idle time by minutes graph.

Day’s Idle Time by Minutes
The Day’s Idle Time by Minutes bar graph shows the top four factors the user can control that
causd the ATP to not produce bags for the previous day. The X-axis represents a breakdown
of these four factors for each ATP at the pharmacy. The Y-axis represents the number of
minutes the ATP sat idle. These are the top four factors.
PharmAlytics ATP User Guide TD56

- Tray set - Time starts from the time the ATP stops and the alarm warns the user to set the tray to the time the user presses the Tray Set button and the ATP resumes operation.
- Canister fill – Time starts from the time the ATP stops and the alarm warns the user to refill the canister to the time the user presses the resume button and the ATP resumes operation.
- Over dispense – Time starts from the time the ATP stops and warns the user of an over dispense to the time the user presses the resume button and the ATP resumes operation.
- No activity- Time starts from the time the previous batch ends to when the next batch begins.

Click on any part of data to open the All the ATP’s Production Detailed Report.

All ATP’s Daily Production Detail Report
Once this report is open it will break down each ATP’s production for the previous day. The following information displayed is based off the production hours of the previous calculated by:

- Production Hours- Time between the first run and the last run in the past 24 hours.
- Number of Orders
- Number of Patients
- Med Pouches Dispensed
- Total Pouches dispensed
- Number of Pills Dispensed (24 hours)
- Dispense Duration (Hours)
- Pouches per Hour
- Pouches per Minute
- Trays
• Tray Set Duration (Minutes)- time from when ATP alarms to the time a tray is set and the ATP resumes the order.
• Average Tray Set time
• Canister Refills
• Canister Fill Duration (Minutes)- time from the alarm to fill a canister to the time the ATP resumes the order.
• Average Canister Fill
• No Activity Duration (Minutes)- time from the end of an order to the start of the next order.
• Check for Over Dispenses- number of “check for over dispense” occurrences.
• Delay Incidences (Minutes)
• Avg % of Canister Fill- percentage of canister being filled for all orders in the past 24 hours.

Utility

The canister to tray ratio page is split into two graphs. The top graph is the Canister to Tray ratio pie graph. It represents the percentage of canister medications to tray medications.
dispensed. The bottom bar graph is the Canisters Used graph which shows the number of canisters in the ATP that have dispensed medications during the last 3 months.

Canister to Tray Ratio Graph
This pie graph displays each ATP’s percent of medications dispensed from canisters versus trays. This graph is a 3-month moving average of the canisters. This data presents another opportunity for the pharmacy to optimize their ATP to its fullest potential and to minimize tray medications. Each pie graph represents an ATP and shows the below information:

- **Canister** – This is the percentage of medication dispensed from canisters.
- **Tray** – This is the percentage medications dispensed from trays.

Tip: Average canister to tray ratio is 80% canisters and 20% trays.

Click on any part of the pie graph to bring the user to the Optimized canister report.

Canisters Used
This bar graph displays the number of canisters that dispensed medications during the last three months versus the number of canisters that did not dispense medication from each ATP. The not used portion of the pie chart is an opportunity for the pharmacy to optimize their ATP to its fullest potential thus eliminating the need for extra tray medications.

Tip: Best optimization is 100% canister usage.
This graph is a moving representation of the canisters for the last 3 months. Each portion of the bar graph represents an ATP and shows the below information:

- **Used** – The number of canisters that dispensed medications during the last 3 months.
- **Not Used** – The number of canisters that did not dispense medications during the last 3 months.

Click on the data in the bar graph to bring the user to the optimized canister report.

![Canisters Used Graph](image)

Optimized Canister Report

This report defaults to show all medications dispensed in the last 3 months (see below for the data fields in the report). Please refer to the TD57-PharmAlytics Canister Optimization document for more information on using the Optimized Canister Report to optimize your ATP.

The report data fields include:

- Rank - medication with most dispensed medication.
- Can # - pinned canister number.
- Smart ID – smart canister ID number.
- Loc Typ – informs user if medication is dispensed within a canister or tray.
- Loc # - defines the location of the canister inside of the ATP.
- Grouped – defines if the canister has more than one canister associated to it.
- NDC
- Customer NDC
- GCN sequence- unique equivalent identifier defined within First Databank (FDB) for equivalent medication.
- Generic Name- medication name.
- Strength
- Qty Dispensed- number of pills dispensed.
- Canister Quantity – quantity currently in the canister.
Use this report to slot additional canisters, remove medication from canisters, group canisters, and optimize throughput. If a column contains an X the report recommends taking the following action:

- **Remove** – Remove canisters that did not dispense enough medications.
- **Slot** - Slot additional canisters if the ATP had empty bases or for those tray medications with high dispensed quantity.
- **Group** - Group canisters that have a high dispense volume.
- **Move to Row** - Move canisters based on dispense quantity to optimize throughput. The lower drawers should be allocated for the higher moving medication canisters allowing for higher ATP production rates.

Quality

Expired Medication Graph

This bar graph shows the number of canisters that contain expired medications for each ATP. Click on any of the data bars to display the expired medications list for that ATP.
Expired Medication List
This list contains all the medication that expired in that specific ATP. This list will allow the user to remove the expired medication from the ATP. It will show the following information.

- Manufacturer
- Generic Name
- Brand Name
- Strength
- NDC
- Location
- Can #
- Smart ID
- Assigned Expiration Date

Soon to Expire Medications Graph
This bar graph shows the number of canisters that contain medications that will expire in the next month. Click on any of the data bars to open the soon to expire medication list.
Soon to Expire Medications List

The list shows the breakdown of what medications that will expire in the next month. This list gives the user the ability to address or remove the canister medications before they expire. It will show the following:

- Manufacturer
- Generic name
- Brand name
- Strength
- NDC
- Location
- Can #
- Smart ID
- Assigned Expiration Date

Over Dispensing – Canister Graph

This graph displays how many instances an ATP has over dispensed a medication during the past 30 days. Click on a data point to bring the user to the over-dispensing detail report.
Over Dispensing Detail Report
This report shows a breakdown of the medications that have over dispensed for the past 30 days. This report allows the user to address and calibrate over dispensing canisters. The report will show the following.

- Rank
- Can #
- Smart ID
- NDC
- Customer NDC
- Generic Name
- Strength
- QTY Dispensed
- Over Dispense Instances
- % Over Dispense
CHAPTER 3: ATP TREND

Production

Overview
Click on the production subtab to open the four different graphs that pertain to the ATP.

- Daily Average bags/hour
- Production Bags/Day
- Daily Idle Time Percent
- Average Idle Time

The Daily average bags/hour graph displays a three-month trendline of every day’s hourly bag average.

The Production Bags/Day graph displays a three-month trend line of the number of bags produced every day.

The Daily Idle time percent displays a three-month trend line of the Idle Time percent for every day.

Average idle time bar graph breaks down the last three-months idle time into the top four main idle times categories that the user can control. These categories are:

- Tray Set
- Canister Fill
- Over Dispense
- No Activity

ATP Detail Production Report Weekly – 3 Months
Click on a data point on any of above graphs to display the ATP Detail Production Report by week for the last three months. This table has the same data fields as the All ATP’s Daily Production Detail Report. Clicking on a Week Date will then display the daily Production Report for that ATP.

Quality

Overview
Click on the quality subtab to open three different graphs that pertain to the ATP system.

- Canisters with Expired Meds
- Canisters with Soon to Expire Meds (less than 1 month)
- Canisters Over Dispensing
Canisters with the expired meds graph will display a trend line of the number of canisters that contained expired medications for each ATP over the past 4 months. Click on a data point to open the expired medication list.

Canisters with soon to expire meds (less than 1 month) graph will display a trend line of the number of canisters that contained soon to expire medications for the past 4 months. Click on a data point to open the soon to expire medications list.

Canisters over dispensing graph will display a trend line of the number of canisters that over dispensed medication for the past 4 months. Click on a data point to open the user to the over-dispensing detail report.

Utilization

Overview

The Utilization subtab will display two graphs: the Utilization - % of Canister Meds Dispensed graph and the Number of Canisters Not Used graph.

The Utilization - % of Canister Meds Dispense

The graph displays a trend line of the medications that were dispensed from the ATP(s) using a canister during the past 3 months. This report is used to rebalance and optimize that ATP. Click on the data to bring the user to the optimized canister report.

Number of Canisters Not Used

The graph displays a 3 month trend line of the number of canisters that were not used in each ATP for a given week. This report is used to rebalance and optimize that ATP. Click on the data to bring the user to the optimized canister report.

CHAPTER 4: ATP THRESHOLD

Overview

This tab allows the user to set the alert and goal criteria depending on the pharmacy’s business plan. The user can set the following goals and alerts.

- Suggest Grouping for Top N Canisters - Number of Canisters to Suggest
- Canister to Tray Ratio
- % Canister Utilization
- Quality – Over Dispensing
- Idle Time
- Daily Production Trend
Setting Up Parameters

Operations

To set the parameters in the threshold tab the user needs to know if the goal is supposed to be a high or low numeric. To know which field to put the higher numeric into use the following table.

The table below defines the goal and alert for each threshold:

Table three

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Goal</th>
<th>Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suggest Grouping for Top n Canisters</td>
<td>N/A</td>
<td>High (BI will suggest grouping canisters up to this #)</td>
</tr>
<tr>
<td>Canister to Tray Ration</td>
<td>High %</td>
<td>Low %</td>
</tr>
<tr>
<td>% Canister Utilization</td>
<td>High %</td>
<td>Low %</td>
</tr>
<tr>
<td>Quality – Over Dispensing</td>
<td>Low #</td>
<td>High #</td>
</tr>
<tr>
<td>Idle Time</td>
<td>Low %</td>
<td>High %</td>
</tr>
<tr>
<td>Daily Production Trend</td>
<td>High #</td>
<td>Low #</td>
</tr>
<tr>
<td>ATPs Not to Alert on Pouches/ Hour</td>
<td>N/A</td>
<td>Select an ATP if you do not want pouches/hour Alerts</td>
</tr>
</tbody>
</table>

To change the ATPs Goals and Threshold settings click on the **ATP subtab** underneath the thresholds tab. Once inside the ATP thresholds tab follow the following steps to set the ATP thresholds.

1. Type the total number of canisters that the user would like to have suggestions for in the Suggest Grouping for Top n Canisters. Leaving this field blank will keep the default set to 10 canisters.
2. Type the number or percent into the proper goal and alert fields.
3. Once the fields contain their numerical numbers click the **save** changes button located in the upper left corner.
4. If the user would like to reset the changes simply click the **reset** button. This will reset the values to the factory default.